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Abstract Habitat selection by the Chinese horseshoe
bat (Rhinolophus sinicus) in the Wuling Mountains was
studied in this paper. Global positioning system (GPS),
remote sensing (RS) and geographic information system
(GIS) technologies were used to obtain ground survey
data and analyse the habitat factors driving the distribu-
tion of R. sinicus. Based on these basic data, a binary
logistic regression method was used to establish habitat
selection models of R. sinicus. Then, the corrected
Akaike information criterion (AICC) was used to screen
an optimal model, and the Hosmer-Lemeshow test indi-
cated that the optimal model has suitable goodness of fit.
Finally, the optimal model was used to predict the spatial
distribution of R. sinicus in the Wuling Mountains.
Verification analysis showed that the overall accuracy
of the model was 72.7% and that the area under the
curve (AUC) value was 0.947, which indicated that the
model was effective for predicting suitable habitat for
R. sinicus. The model results also showed that the main
factors that influenced habitat selection were slope,

annual mean temperature and distances from roads,
rivers and residential land. R. sinicus preferred areas
far from roads and residential land and areas near rivers.
Generally, higher values of slope and annual mean
temperature were associated with a greater likelihood
of R. sinicus presence. Therefore, the protection of the
water bodies surrounding R. sinicus habitats and fully
addressing the impacts of human activities on R. sinicus
habitats are recommended to protect the survival and
reproduction of the population.

Keywords Habitat selection . Spatial distribution
prediction . Rhinolophus sinicus . Logistic regression
model

Introduction

Research on the mechanisms of habitat selection and the
prediction of the spatial distribution of species can ob-
jectively reflect the inherent regularity of species’ hab-
itat choice. This type of research is of great relevance for
the protection and maintenance of biological diversity,
especially for the protection of endangered species
(Wang 2009; Wang and Li 2008).

The habitat selection mechanisms of animals are
susceptible to various factors (Atuo and O’Connell
2017; Atuo et al. 2016; Zhang et al. 2014; Li et al.
2016). If animals’ habitat selection is studied using a
single data source, the habitat characteristics cannot be
described in detail, and certain key factors are likely to
be neglected (Jiang 2007). Thus, using multisource data
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to study habitat selection can comprehensively reflect
the characteristics of animals’ habitat selection. Species
distribution models (SDMs) are important measures of
species’ habitat selection. SDMs primarily use data on
the distribution of species and the corresponding envi-
ronmental data to estimate the niche of a species using
various algorithms. The results are then applied to the
study area, and the distribution of the target species is
estimated (Li et al. 2013; Xu et al. 2015). Many scholars
select only environmental factors for modelling and
ignore anthropogenic disturbance factors in SDMs (Fu
et al. 2011; Vitousek et al. 1997). However, anthropo-
genic disturbance is an important factor in habitat selec-
tion by animals (Dudgeon et al. 2006). We sought to
address these issues in the development and validation
of SDMs by creating occupancy models and mapping
the distribution of the Chinese horseshoe bat
(Rhinolophus sinicus).

R. sinicus is a typical cave-dwelling species; it re-
mains in the cave during the day but flies outside the
cave to prey on insects (mostly agricultural and forestry
pests, mainly Lepidoptera and Coleoptera species) at
night. R. sinicus is distributed in the Himalayas, China
and Vietnam (Xie et al. 2017). In China, R. sinicus is
mainly distributed in the area south of the Yangtze River
(Wang 2003). According to the 2016 World Conserva-
tion Union Red List (IUCN 2016), 29.1% of the popu-
lation of Rhinolophus showed a decreasing trend due to
habitat fragmentation and anthropogenic disturbance.
There has been extensive research on the cytogenetics
(Xu 2012), predation, predation behaviour (Miková
et al. 2013), habitat selection (Yu et al. 2015) and
echolocation (Zhang et al. 2008) of R. sinicus. However,
research on habitat selection mechanisms, the factors
affecting habitat selection and spatial distribution pre-
diction for R. sinicus remains lacking in an important
R. sinicus distribution area—the Wuling Mountains.

The existing research on the dependence of bats on
caves was mainly conducted by investigating caves to
obtain point source information, including the geo-
graphical locations of the caves, altitude and vegetation
status (Yu et al. 2015), which is time consuming,
labourious and inefficient. With the development of
spatial information technology, animal habitats have
been monitored and mapped synchronously with B3S^
technology, which includes global positioning system
(GPS), remote sensing (RS) and geographic information
system (GIS). B3S^ technology has the advantages of
covering a large area and being fast and highly efficient,

and it can also obtain surface source information (Chen
et al. 2015). Therefore, using B3S^ technology for data
acquisition is not only time saving and labour saving but
also scientific and objective.

A generalised linear model (GLM) is a type of SDM
that represents the generalisation of multiple linear re-
gressionmodels (Xu et al. 2015). Amongmultiple linear
regression models, logistic models are the most well
known (Deng 2010) and have been widely used to study
habitat selection by wildlife (Atuo et al. 2016; Fu et al.
2011; Ji et al. 2007). In the present study, we created and
validated a binary logistic regression model based on
B3S^ technology from the perspective of multisource
data (Sukumal et al. 2010; Li et al. 2012), which can
be used to identify high-priority areas for conservation
and provide important theoretical guidance for the con-
servation of species and the maintenance of species
diversity. Specifically, our objectives were to (1) deter-
mine how habitat factors influence habitat selection by
R. sinicus, (2) determine the interference effects of an-
thropogenic disturbance factors on habitat selection by
R. sinicus and (3) analyse the primary factors influenc-
ing species presence and the habitat selection character-
istics of R. sinicus to predict the spatial distribution of
this species.

Materials and methods

Study area

The study area spans the main distribution area of
R. sinicus (25° 52′ to 31° 24′ N and 107° 04′ to 112°
02′ E) and encompasses four administrative prov-
inces and cities (Hunan, Hubei, Chongqing and Gui-
zhou; Fig. 1). The area has a total of approximately
0.17 million km2 with an average elevation of 700 m
and an average slope of 15°. The climate in this
region is a transition zone from subtropical to warm
temperate, the annual average temperature is 13.5 to
17.0 °C, and the total annual precipitation is between
1100 and 1600 mm. The forest cover types in this
area are mainly coniferous and broad-leaved mixed
forest and evergreen coniferous forest, and the aver-
age forest coverage is 56%, which is much higher
than the national average of 20.36% (You et al.
2013). The carbonate karst caves in this region are
well developed. The study area is one of the main
distribution areas of bats in China (Li et al. 2005).
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Sample collection

Several data sources were used in the binary logistic
regression model. From January 2015 to April 2017,
field surveys of caves were conducted in the Wuling
Mountains. R. sinicus is a typical cave-dwelling species
and is highly dependent on caves. Therefore, it is im-
portant to know the distribution of caves in the study
area. The random point method (Mcconnell et al. 2008)
was used to determine the area to be investigated, and
the caves in the area were investigated by visiting local
residents and guides.

During the study, we took the time during which
R. sinicus rests in the cave as the observation period
(9:00–17:00). Caves were determined to represent
R. sinicus habitat based on observations and record-
ings of excrement, food trails, naturally dead individ-
uals and living individuals of R. sinicus in the caves.
At each sampling locality, we observed and recorded
habitat information such as topography (altitude,
slope and aspect), vegetation status, cave character-
istics (the size of the hole and the length of the cave,
etc.) and human disturbance (farmlands, roads and
residential land) inside and around the cave and re-
corded the geographical location of each cave using
GPS (Garmin International, Inc., Olathe, KS, USA).
ArcGIS10.2 (ESRI, Redlands, CA, USA) was used to
generate the survey point vector data. In this study,

55 caves were investigated. Twenty-nine caves were
identified as habitats of R. sinicus (Fig. 1).

To identify R. sinicus, bats were captured with mist
nets as they left their day roosts. For the captured bat
individuals, we recorded the sex, measured morpholog-
ical characters and identified them to species.

Selection and normalisation of factors

A number of abiotic, biotic and anthropogenic factors
can influence the quality and availability of species’
habitat (Ouyang et al. 2011; Fan et al. 2014). To explore
R. sinicus habitat selection mechanisms and describe
R. sinicus habitat, ten factors were selected from among
four categories of habitat factors: vegetation factors,
topographic feature factors, meteorological factors and
anthropogenic disturbance factors.

Vegetation factors Vegetation coverage (VFC) is a good
indicator of vegetation status (Liu et al. 2011; Uhrin et al.
2017). RS data can be used to obtain a thematic map of
vegetation indices (Liang et al. 2015, 2016, 2017). In the
present study, the thematic map mainly contained nor-
malised difference vegetation index (NDVI) data, with
outliers removed, based on Landsat 8 OLI data from
2015 to 2017, which were obtained from the Geospatial
Data Cloud. The land use data were available as global
surface coverage data from GlobeLand30 and were

Fig. 1 Overview of the study area. The background is the elevation of the study area. The points are survey points from 2015 to 2017
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downloaded from the Global Land Cover website. Based
on the NDVI data and land use data, a VFC map of the
study area was retrieved using the dimidiate pixel model
(Zribia et al. 2003; Wu et al. 2017; Zhou et al. 2017).

Topographic feature factors Topographic feature fac-
tors include elevation, slope and aspect (Wang 2009;
Uhrin et al. 2017). Based on digital elevation model
(DEM) data, slopes and aspects were calculated by the
GIS spatial analysis module. The DEM data were
downloaded from the Geospatial Data Cloud at 30-m
spatial resolution from the GDEMDEM data.

Meteorological factors The meteorological factors
comprised annual mean temperature and annual precip-
itation. After pretreatment, the annual mean temperature
and annual precipitation were extracted. The meteoro-
logical data were downloaded from the global meteoro-
logical data set of the WorldClim Version 2 of theWorld
Meteorological Database (http://www.worldclim.org/).

Anthropogenic disturbance factors The anthropogenic
disturbance factors were the nearest distances from
roads, rivers, residential land and farmland (Kelly
et al. 2016; Gerald and Markus 2009; Agosta et al.
2005; Lumsden et al. 2002). The Euclidean distance
calculation method (Montechiesi et al. 2016) was
used to determine the nearest distances from roads,
rivers, farmland and residential land at each point
(30 × 30-m grid) in the study area. In this study,
river, farmland and residential land data were ex-
tracted from the land use data. The land use data
were available as global surface coverage data from
GlobeLand30 and were downloaded from the Global
Land Cover website. The road vector data were
downloaded from the DIVA-GIS website.

All statistical analyses of the data were performed
using SPSS18.0 (IBM, New York City, New York,
USA). Because the units of each factor were inconsis-
tent, a unified dimension of each factor was required for
modelling, and all habitat factors were normalised to
remove the effects of dimension.

Habitat factor analysis before modelling

To analyse the effect of each factor on habitat selection by
R. sinicus, the importance of the factors was explored by
difference analysis (comparing the difference of each
factor between the presence and absence of R. sinicus).

In this study, the Kolmogorov-Smirnov test (K-S test)
was used to test the normality of the factors (Wang 2009;
Fu et al. 2011). For normally distributed factors, an
independent sample t test was used to analyse the signif-
icance of the difference in each factor between the pres-
ence and absence of R. sinicus (Fu et al. 2011). For the
factors with non-normal distributions, theMann-Whitney
U test was used to analyse the significance of the differ-
ences of the original data (Wang 2009; Fu et al. 2011).

To test the independence of the above habitat factors
and avoid the influence of collinearity among the fac-
tors, it was necessary to analyse the correlation of each
factor before modelling. During the correlation analysis,
one of the factors was removed according to the impor-
tance of ecological significance when the correlation
coefficient between two factors was greater than 0.75
(Fu et al. 2011).

Modelling

The binary logistic regression model has been widely
used to study and predict habitat selection by species
because it can predict the probability of occurrence
accurately (Fu et al. 2011; Ji et al. 2007). In this study,
we extracted the values of habitat factors corresponding
to each surveyed spot from the habitat factor thematic
map described in the BSelection and normalisation of
factors^ section. Then, the extracted habitat factors’
values were entered as independent variables in different
combinations (10 factors, 1023 combinations);
R. sinicus presence/absence was entered as a dependent
variable, and all possible models were implemented.
The basic formula of the binary logistic regression mod-
el was as follows (Ji et al. 2007; Li et al. 2012):

Logit
P Y ¼ 1ð Þ

1−P Y ¼ 1ð Þ ¼ αþ β1x1 þ β2x2 þ β3x3

þ⋯þ βixi ð1Þ
where α is constant of the equation, xi is a predictor
factor and βi is the coefficient of the predictor factor.

To screen the optimal models, the corrected Akaike
information criterion (AICC), a modification of Akaike’s
information criterion (AIC), was used to determine sig-
nificant differences among different models and com-
prehensively weigh the relationship between the appli-
cability of a model and the number of parameters
(Hurvich et al. 1990; Akaike 1973, 1974; Atuo and
O’Connell 2017; Atuo et al. 2016; Shu et al. 2010). Wi
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is the weight of each model, which can represent the
relative importance of the model. AICC and Wi were
determined using the following formulas (Shu et al.
2010; Burnham and Anderson 2002):

AICC ¼ −2ln L Djθ̂̂
� �h i

þ 2
n

n−m−1

� �
ð2Þ

ΔAICC ¼ AICCi−AICCmin ð3Þ

W i ¼
exp −

ΔAICCi

2

� �

∑
R

r¼1
exp −

ΔAICCi

2

� � ð4Þ

where ln L Djθ̂
� �h i

is the maximum log likelihood, m is
the number of model parameters including the number
of factors and the intercept and n is the sample number.

In this study, AICC and Wi were used to select the
most appropriate regression model and determine the
primary influencing factors. First, the model with the
lowest AICC value was selected as the optimal model,
and the factors contained in the model were considered
the main influencing factors. Second, any model within
ΔAICC < 2.0 of the optimal model was considered ac-
ceptable (Burnham and Anderson 2002). Third, the
weighted coefficients of the main influencing factors
in these models were summed to obtain the final coef-
ficients of main influencing factors and the logistic
regression model was established.

In logistic analysis, the Hosmer-Lemeshow test is
typically used to verify the fitting effect of the model.
Therefore, the Hosmer-Lemeshow test was used to eval-
uate the fitting degree of the model in this study. The
Hosmer-Lemeshow test reflects the difference between
the expected frequency and the observed frequency. If
the difference is not significant, the chi-square value is
small and the significance value is large (Hosmer and
Lemeshow 2000; Gao et al. 2017).

Habitat distribution prediction and accuracy evaluation

Using the thematic map of the main influencing factors
as the input variables in the established model, the
spatial distribution R. sinicus was predicted in the
Wuling Mountains. Then, we used the 55 surveyed sites
to evaluate the prediction results. First, we adopted a

threshold method to distinguish suitable habitats and
unsuitable habitats for R. sinicus and then calculate the
overall prediction accuracy (Qin et al. 2017; Abdukerim
et al. 2016). In addition, the receiver operating charac-
teristic (ROC) curve was used to evaluate the model.
The ROC curve takes each value of a predicted result as
a possible judgement threshold, thereby calculating the
corresponding sensitivity and specificity. Because this
method combines the advantages of the sensitivity and
specificity indices and is simple, the ROC curve has
been widely used in species distribution modelling
(Wang et al. 2007; Qin et al. 2017).

Results and analysis

The distribution characteristics of habitat factors
in the Wuling Mountains

The VFC in the Wuling Mountains area ranged from 0
to 100%, and the average value was approximately
83%. Regions with VFC greater than 90% accounted
for 93.7% of the total study area (Fig. 2a), which indi-
cated good vegetation growth in the Wuling Mountains.
You et al. (2013) showed that the forest coverage rate
reached 56% in the Wuling Mountains, which was
much higher than the national average of 20.36%.

Regarding the topographic feature factors, the aver-
age elevation of the Wuling Mountains was approxi-
mately 702 m and the average slope was 16°. As the
Wuling Mountains lie in the western and northern re-
gions of the study area, the elevation and slope of the
western and northern regions were greater than those of
the eastern and southern regions (Fig. 2b, c). Due to the
large number of ranges in the study area, the number of
grids in each of the four aspects of the study area was
similar (Fig. 2d).

The climate in this region was a transition zone from
subtropical to warm temperate, the annual mean tem-
perature was 13.5 to 17.0 °C, and the annual mean
temperature in the north was lower than that in the south
(Fig. 3a). The total annual precipitation was between
1100 and 1600 mm, and the annual precipitation in the
east was greater than that in the west (Fig. 3b).

The anthropogenic disturbance factors had a negative
effect on habitat loss and fragmentation, and we consid-
ered the effects of anthropogenic disturbance on habitat
selection. The Euclidean distance calculation method
was used to obtain the nearest distances from roads,
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rivers, farmland and residential land at each point (30 ×
30-m grid) of the study area (Fig. 4). Among all survey
sites, the minimum distance from roads was 242 m, and

the maximum distance was 33,062 m; the minimum
distance from rivers was 518 m, and the maximum
distance was 9332 m; the minimum distance from

Fig. 2 The vegetation coverage and topographic features in the study area. a Vegetation coverage. b Elevation. c Slope. d Aspect
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residential land was 189 m, and the maximum distance
was 8561 m; and the minimum distance from farmland
was 15 m, and the maximum distance was 1570 m.

The importance and independence of habitat factors

This paper examined the factor differences between the
areas where R. sinicus was present and those where it
was absent. The K-S test showed that the factors such as
slope, elevation, vegetation coverage, annual mean tem-
perature, annual precipitation and nearest distances from
roads and rivers exhibited normal distributions (thus,
they were analysed using an independent sample t test),
whereas the nearest distances from residential land and
farmland did not (thus, they were analysed using a
Mann-Whitney U test). The results indicated that
R. sinicus preferred areas with higher elevation, steeper
slopes and higher VFC. At the same time, these areas are
close to rivers; far away from roads, residential land and
farmland; and have suitable temperatures (approximate-
ly 15.6 °C) and abundant precipitation (approximately
1400 mm). In addition, the results showed that the
differences in slope, elevation, annual mean tempera-
ture, annual precipitation and nearest distances from
rivers, roads, residential land and farmland were

significant between R. sinicus presence areas and ab-
sence areas, whereas VFC was not significantly differ-
ent between areas (Table 1). This latter finding is likely
due to the high total VFC in theWulingMountains. That
is, although vegetation coverage is an important factor
affecting the distribution of R. sinicus in other places
(Froidevaux et al. 2016), the high overall VFC makes it
no longer a limiting factor in the Wuling Mountains.

To test the independence of each factor, the correla-
tions of habitat factors were analysed. The result showed
that the correlation coefficients between each factor
were less than 0.75 (Table 2), indicating that there was
no multicollinearity between the factors; therefore, the
model will be established by using all of the factors
mentioned in the BMaterials and methods^ section in
the subsequent process.

Habitat selection model of R. sinicus

The habitat factors identified by the correlation and dif-
ference analyses were used to establish the logistic re-
gression models, and a total of 1023 models were
established. AICC andWi were calculated for eachmodel,
followed by the value ofΔAICC. Among them, the model
with the smallest AICC was selected as the optimal

Fig. 3 The annual mean temperature (a) and annual precipitation (b) in the Wuling Mountains area
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model, which included the factors nearest distances from
rivers, roads and residential land; annual mean tempera-
ture; and slope, indicating that these factors were themain

factors influencing habitat selection in R. sinicus. Then,
all of the remaining models with ΔAICC < 2.0 were fil-
tered out, and the weighted sums of the main factor

Fig. 4 The anthropogenic disturbance factors. Nearest distance from a roads, b rivers, c residential land and d farmland
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coefficients were calculated (Table 3). Finally, the prob-
ability model of R. sinicus was obtained:

Logit
P

1−P
¼ 0:013þ 0:13� Slopeþ 0:171

� Road−0:774� River þ 0:352

� Residents −0:496� BIO1 ð5Þ

where Slope is the normalised slope, Road is the normal-
ised nearest distance from roads, River is the normalised

nearest distance from rivers, Residents is the normalised
nearest distance from residential land and BIO1 is the
normalised annual mean temperature.

The Hosmer-Lemeshow test was used to evaluate
model fit. Our calculations showed that the expected
values were close to the observed values (Table 4). We
set 0.05 as the significance level such that the critical
value was CHIINV (0.05, 7) = 14.067. As shown in
Table 4, the Hosmer-Lemeshow test yielded a chi-
square value of 2.329, which is less than the critical
value, and the statistic was not significant (P = 0.939).

Table 1 Comparisons of the factors between presence and absence areas of R. sinicus

Factor Present Absent K-S test Independent
sample t test

Mann-
Whitney
U test

Z-value t-value U-value

Elevation 590.690 ± 260.972 499.385 ± 198.572 1.043 0.631* –

Slope 20.630 ± 9.523 12.236 ± 10.957 0.979 0.194* –

Vegetation coverage 0.788 ± 0.063 0.774 ± 0.047 0.951 0.365 –

Nearest distance from rivers 3028.022 ± 1887.083 3914.003 ± 1904.553 0.577 0.289* –

Nearest distance from roads 5806.966 ± 4105.416 2828.615 ± 2994.518 1.215 9.866* –

Nearest distance from
residential land

3744.573 ± 2169.381 2136.203 ± 1750.659 2.009 – 163*

Nearest distance from farmland 313.049 ± 342.814 124.174 ± 191.958 1.662 – 211.5*

Annual mean temperature 15.61 ± 1.17 16.39 ± 0.93 1.282 1.160* –

Annual precipitation 1418.97 ± 53.44 1376 ± 47.43 1.258 1.074* –

*Difference is significant at the 0.05 level (two-tailed test). Because aspect is a qualitative factor (including sunny slope, semi-sunny slope,
semi-shady slope and shady slope) and the difference analysis generally considers quantitative factors, this paper did not carry out a
difference analysis of aspect

Table 2 Pearson correlation coefficients between driving factors

Habitat factors 1 2 3 4 5 6 7 8 9 10

1 1

2 − 0.015 1

3 0.049 − 0.12 1

4 − 0.061 0.595 0.033 1

5 0.100 0.229 0.589 − 0.030 1

6 − 0.031 0.442 0.126 0.205 0.419 1

7 − 0.014 0.209 0.261 0.220 0.462 0.355 1

8 0.002 0.182 0.417 0.265 0.301 0.108 0.383 1

9 0.040 − 0.673 − 0.150 − 0.450 − 0.409 − 0.417 − 0.273 − 0.239 1

10 − 0.056 0.696 0.159 0.327 0.463 0.272 0.269 0.201 − 0.681 1

1, aspect; 2, elevation; 3, slope; 4, vegetation coverage; 5, nearest distance from roads; 6, nearest distance from rivers; 7, nearest distance
from residential land; 8, nearest distance from farmland; 9, annual mean temperature; 10, annual precipitation

Environ Monit Assess (2019) 191: 4 Page 9 of 15 4
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The results indicate that the model has suitable goodness
of fit and can be used to predict the spatial distribution of
R. sinicus in the Wuling Mountains.

Spatial distribution of R. sinicus in the Wuling
Mountains

In this paper, the grid layers, including elevation and
nearest distances from roads, rivers and residential land
were plugged into the regression equation and the grid
was calculated. Then, the probability map of spatial
distribution of R. sinicus in the Wuling Mountains was

obtained (Fig. 5).We considered areas with probabilities
greater than 0.5 as areas of available habitat for
R. sinicus and those with probabilities equal to or less
than 0.5 as areas of non-available habitat according to
Wang (2009). The results showed that the available
habitat area was 83,408.7 km2, accounting for 48.5%
of the total study area, and was mainly distributed in the
northern northwestern regions of theWulingMountains.
The non-available habitat area was 88,534.9 km2, ac-
counting for 51.5% of the total study area, and was
mainly distributed in the southern region of the Wuling
Mountains. The available habitat for R. sinicus appeared

Table 3 Weighted average sums of the factor coefficients in the models with ΔAICC < 2.0

Model Model coefficients Wi Weighted average sum of coefficients

Slope Road River Residents Tem Slope Road River Residents Tem

Slope + Tem + River+ Residents 1.117 − 2.903 1.550 − 2.137 0.066 0.073 − 0.191 0.102 − 0.140
Residents + River + Road + Tem 1.394 − 3.291 1.416 − 1.855 0.063 0.089 − 0.209 0.090 − 0.118
Road + Residents + River + Slope +

Tem
0.687 0.852 − 3.220 1.420 − 2.053 0.038 0.026 0.032 − 0.121 0.053 − 0.077

Slope + Farmland + River + Residents +
Tem

0.937 − 3.187 1.489 − 2.275 0.033 0.031 0.05 − 0.104 0.048 − 0.074

Road + Farmland + River + Residents +
Tem

1.151 − 3.419 1.341 − 1.984 0.044 − 0.150 0.059 − 0.087

Sum 0.13 0.171 − 0.774 0.352 − 0.496

Themodels represent themodels with ΔAICC < 2.0; the model coefficients were obtained from the binary logistic regressionmodel;Wi is the
weight of model; the weighted average sums of the coefficients were equal to the model coefficients multiplied byWi, and then the product
was summed

Table 4 Hosmer-Lemeshow goodness-of-fit test results for the logistic model

Group Total Y = 1 Y = 0

Observed Expected Observed Expected

1 6 0 0.022 6 5.978

2 6 0 0.193 6 5.807

3 6 1 0.588 5 5.512

4 6 1 1.971 5 4.029

5 6 4 3.513 2 2.487

6 6 5 4.590 1 1.410

7 7 6 6.407 1 0.593

8 6 6 5.866 0 0.134

9 6 6 5.949 0 0.051

Chi-square DF P

2.329 7 0.939

Group represents the sample group; Total represents the number of samples in each group. Y = 1 denotes R. sinicus presence; Y = 0 denotes
R. sinicus absence; Observed refers to the observed frequency; Expected refers to the expected frequency; Chi-square is the index value of
the Hosmer-Lemeshow test; DF is degrees of freedom; P is statistical significance
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to exhibit fragmentation in the Wuling Mountains,
which poses a threat to the survival and reproduction
of R. sinicus.

Prediction accuracy evaluation

In this study, surveyed sites were used to evaluate the
prediction accuracy. According to Qin et al. (2017) and
Abdukerim et al. (2016), we set a threshold of 0.2, and
the probability of occurrence corresponding to each
survey site was extracted. An occurrence probability
value of the point corresponding to the presence of
R. sinicus greater than 0.2 or one corresponding to the
absence of R. sinicus less than 0.2 indicated that the
prediction was correct; otherwise, the prediction was
incorrect. Validation analysis showed that among all
survey samples, 40 samples were correct; that is, the
prediction overall accuracy was 72.7%, indicating that
the model has good prediction performance.

To further evaluate the prediction accuracy, each value
of a predicted result was used as a possible threshold to

draw the ROC curve in this paper. Figure 6 shows the
ROC curve obtained from the binary logistic regression
model. The ROC curve is drawn with the false positive
rate (1—specificity) as the abscissa and the true positive
rate (sensitivity) as the ordinate, and the area under the
curve (AUC) is taken as a measurement index of model
prediction accuracy, which is obtained by integration (Xu
et al. 2015;Wang et al. 2007). The values range from 0 to
1; the greater the value, the stronger the judgement of the
model. In the study, the AUC value of the model predic-
tion result was 0.947, which is higher than the value of
0.5 from a random distribution model, indicating that the
prediction of the spatial distribution of R. sinicus in the
Wuling Mountains is reliable.

Discussion

Habitat selection is a behavioural process in which
species respond to and make decisions about available
habitats. The factors that influence bat habitat selection
include insect abundance (Goiti et al. 2015), forest type
(Wang 2009), tree line (Kalda et al. 2015), microclimate
conditions (Miková et al. 2013), elevation (Wang 2010;
Bontadina 2002) and human disturbance factors (Kelly
et al. 2016), indicating that bat habitat selection was
complex. In this study, the binary logistic regression
model was used to study the habitat selection mecha-
nisms of R. sinicus and predict the spatial distribution of
this species in the Wuling Mountains. The validation
analysis indicated that the reliability of the model was

Fig. 5 Predicted spatial distribution of R. sinicus

Fig. 6 Receiver operating characteristic curve
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good, and the results can provide a scientific basis for
relevant departments or decision makers.

The comprehensive model se lec t ion and
difference analysis results revealed that R. sinicus
preferred areas far from roads, residential land and
farmland and areas near rivers. Human activities
frequently occur near roads, residential land and
farmland, which provided a certain constraint on the
range of these activities. Gaisler et al. (1998) found a
negative correlation between the number of bats and
the distance from the centre of a city. Gerald and
Markus (2009) found that roads could directly or
indirectly reduce the number of animals and
interfere with the activities of animals. Kelly et al.
(2016) showed that the enhancement of agricultural
production largely limited the ability of farmland to
support other species, and agriculture was predicted
to have a negative impact on bats and other species in
the future. These results were consistent with those of
the present study. The insect abundance was higher
near rivers, which can provide a rich food source for
R. sinicus. Additionally, rivers can provide the nec-
essary water for R. sinicus. Studies have shown that
rivers are generally considered to be important
sources of food and drinking water for bats (Wang
2009), and this result was validated in the present
study. At the same time, the spatial distribution pre-
diction showed that there was fragmentation of the
suitable habitat of R. sinicus, which might seriously
affect the survival and reproduction of the species.
Therefore, local government departments need to
take conservation measures as soon as possible to
maintain the local biodiversity according to the pre-
dicted distribution of suitable habitats.

Topographical features influenced the distribution of
R. sinicus. Although the results of model selection indi-
cated that elevation was not a major influencing factor,
within a certain range, the higher the elevation, the
greater the likelihood of R. sinicus presence. Almost
all sites where R. sinicus was present were distributed
in the mountainous areas above 500 m. Wang (2009)
and Bontadina (2002) found that elevation was an im-
portant factor in habitat selection by R. sinicus, which is
consistent with our findings. The aspect of a mountain
has a substantial impact on light intensity. Although the
model results showed that aspect was not an important
predictor of R. sinicus habitat selection, 23 of the 29
sites with R. sinicus presence were located on semi-
shady and semi-sunny slopes, indicating a preference

of R. sinicus for such slopes. R. sinicus is a nocturnal
species that consistently lives in dark environments and
avoids light. Due to the impact of light intensity, sunny
slopes are often dry and have high temperatures, which
are not suitable conditions for R. sinicus. In addition, the
temperatures of semi-shady and semi-sunny slopes are
higher than those of shady slopes. Thus, the insect
richness of semi-shady and semi-sunny slopes is higher
than that of shady slopes because insects are very sen-
sitive to temperature, which is beneficial for R. sinicus
predation (Wang 2009).

Regarding the meteorological factors, annual mean
temperature was an important variable affecting
R. sinicus presence. Almost all of the sites where
R. sinicus was present were distributed in an area with
an annual mean temperature greater than 15 °C, and the
suitable annual temperature was approximately 15.6 °C.
However, a higher annual mean temperature did not
correlate with a greater occurrence probability of
R. sinicus. Although the results of model selection indi-
cated that annual precipitation is not the main factor
influencing habitat selection in the Wuling Mountains,
R. sinicus prefers high-humidity areas, and the annual
precipitation can affect the activity of R. sinicus by
affecting the environmental humidity. Wang (2009)
found that bat activity was affected by temperature and
humidity, consistent with the results of the present study.

The difference in the response of bats to vegetation
structure depends on the predation strategy, ecological
characteristics, and wing shape. Bats with low
manoeuvrability prefer open areas, while bats with high
manoeuvrability prefer complex zones (Froidevaux et al.
2016). R. sinicus belongs to the Microchiroptera, which
comprises small bats with high manoeuvrability; there-
fore, these bats prefer a complex zone with high VFC.
However, the results showed that VFC did not influence
habitat selection. The reason was likely that more than
93.6% of the total study area had VFC greater than 70%,
which indicated that the entire study area has a complex
vegetation structure. In that case, although VFC is impor-
tant forR. sinicus, it is no longer a limiting factor affecting
their distribution in the Wuling Mountains.

Conclusion

The study of habitat selection mechanisms is impor-
tant for species interaction and for the survival, con-
servation and maintenance of species diversity. In
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this paper, B3S^ technology and binary logistic re-
gression methods were used to study the habitat
selection mechanisms and predict the spatial distri-
bution of R. sinicus in the Wuling Mountains. The
major findings include the following:

1. Verification analysis of R. sinicus’s spatial distribu-
tion prediction showed that the overall accuracywas
72.7% and that the AUC value was 0.947, which
indicated it was appropriate to use B3S^ technology
and binary logistic regression methods to study
habitat selection by R. sinicus in the Wuling
Mountains.

2. The results showed that R. sinicus’s available
habitat accounts for approximately 48.5% of the
Wuling Mountains, mainly in the north and
northwest regions. It is noteworthy that the avail-
able habitat appeared to exhibit fragmentation in
the Wuling Mountains, which poses a threat to
the survival and reproduction of R. sinicus.

3. In the Wuling Mountains, the main factors that
influenced habitat selection were slope, annual
mean temperature and distances from roads, riv-
ers and residential land. R. sinicus preferred areas
far from roads and residential land and areas near
rivers. Generally, high values of slope (greater
than 15°) and suitable annual mean temperature
(approximately 15.6 °C) were associated with a
greater likelihood of R. sinicus presence.
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